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Abstract

Mortality projection is a pivotal topic in the diverse branches related to
insurance, demography, and public policy. Motivated by the thread of Lee-
Carter related models, we propose a Bayesian model to estimate and predict
mortality rates for multi-population. This new model features in information
borrowing among populations and properly reflecting variations of data. It
also provides a solution to a long-time overlooked problem: model selection
for dependence structures of population-specific time parameters. By intro-
ducing a novel dirac spike function that hierarchically follows the conditional
autoregressive model via the probit link, simultaneous model selection and
estimation for population-specific time effects can be achieved without much
extra computational cost. Additionally, this selection procedure can leverage
spatial information to inform about the geographic proximity in adjacent ar-
eas. Via the Brook’s lemma and data augmentation steps, a computationally
efficient MCMC sampling algorithm is also developed. We use the Japanese
mortality data sets from Human Mortality Database to illustrate the desirable
properties of our model.

keywords: Bayesian Poisson LC model, Dirac spike, Mortality projection,
Conditional autoregressive model, Probit regression model.

1 INTRODUCTION

Mortality projection has become an important topic in demographics since it is
greatly involved in many policy makings including but not limited to public health,
pension, retirement system and labor resources. Especially for those developed
and developing countries that experience population aging due to rapid growth of
life expectancy and decline of birth rate after 1950s (Tuljapurkar et al., 2000), a
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thorough and well established policy relies on an accurate prediction of mortality
trajectory.

Over last decades, stochastic models have been widely applied to mortality pro-
jection because the produced forecasts along with intervals can properly capture
uncertainties over time and inform decision makings. The Lee-Carter (LC) model, a
leading model proposed by Lee and Carter (1992), decomposes the centered mortal-
ity force in log scale as the product of age and time effects, and considers a random
walk with drift model on time effect profile for the prediction purpose. This log-
bilinear model was first developed for the U.S. mortality data from 1933 to 1987, and
now becomes a benchmark widely implemented in all-cause or cause-specific mor-
tality data. Following this structure, Brouhns et al. (2002) proposed the Poisson
model for the number of deaths instead of directly modeling the observed mortality
rate. Although it may encounter overdispersion due to the limitation of a Possion
distribution, the Poisson LC model distinguishes the cases with the same observed
rate but different exposures at risk, and hence, leverages more information from the
data. On this basis, Czado et al. (2005) extended to a Bayesian framework to bypass
the two-stage estimation procedure while preserving uncertainty from the model in
the posterior predictive distributions of mortality rates. Wong et al. (2018) further
introduced a random effect to accommodate overdispersion. Other related works
can be referred to Girosi and King (2003), Renshaw and Haberman (2003), Cairns
et al. (2006) and Plat (2009).

Motivated by the benefits of borrowing information among populations, many
works, such as Li and Lee (2005), Cairns et al. (2011), Li and Hardy (2011), and
Antonio et al. (2015), have focused on simultaneously projecting the mortality rates
of multiple groups by encapsulating the common and population-specific age and
time components in the models. In this paper, we revisit the works of Wong et al.
(2018) and Antonio et al. (2015), and develop a new multi-population model that
can address overdispersion in the count data and leverage spatial information in de-
termining the dependence structures of population-specific time parameters. Specif-
ically, we consider the autoregressive model of order one (AR(1)) with a drift for
each population-specific time effect profile followed by a dirac spike setting (George
and McCulloch, 1993; Ishwaran et al., 2005; Malsiner-Walli and Wagner, 2018) on
the drift term and the slope associated with time. To improve this simultaneous
model selection and estimation procedure with spatial information, the inclusion
probability that controls binary switches between the spike and slab components is
further fitted with a probit regression model, where the latent variable (Albert and
Chib, 1993) for each population profile jointly follows a conditional autoregressive
(CAR) model (Cressie and Chan, 1989; LeSage, 2000).

The remainder of the paper is organized as follows. In Section 2, we review
the Lee-Carter model and its recent developments. Section 3 introduces the pro-
posed model along with the prior settings and detailed steps of an Markov chain
Monte Carlo (MCMC) sampling. In Section 4, we apply the proposed method to
two Japanese mortality data sets from Human Mortality Database (HMD, 2021).
Finally, we conclude with a discussion in Section 5.

2 LEE-CARTER MODEL AND ITS EXTENSIONS

Lee and Carter (1992) introduced a stochastic model for modeling the US mor-
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tality data from 1933 to 1987 in an attempt to forecast the future mortality rate
during 1988-2065. Suppose Θage = {x1, x1 + 1, . . . , x1 +M − 1} ≡ {x1, x2, . . . , xM}
and Θtime = {t1, t1 + 1, . . . , t1 +N − 1} ≡ {t1, t2, . . . , tN} denote the sets of age and
time considered in the training dataset, respectively, the Lee-Carter model is then
given by

logmx,t = αx + βxκt + ϵx,t, (1)

where mx,t is the observed mortality rate for the group aged x at time t, ϵx,t is the
error term, and x ∈ Θage and t ∈ Θtime. Essentially, this model is a special case
of log-linear model in a cross table because logmx,t is decomposed as the product
of age (βx) and time (κt) effects plus an age-specific intercept (αx), where βx is a
constant over time while an additional time series model is placed on κt for the
prediction purpose. To make αx, βx, and κt in (1) estimable, two constraints are
imposed in Lee and Carter (1992):

∑
x∈Θage

βx = 1 and
∑

t∈Θtime
κt = 0. With such

constraints, the age-specific intercept αx is first estimated as the mean of log rates
at age x observed across time, and then the singular value decomposition (SVD)
is applied to the matrix of centered log rates, logmx,t − α̂x, to estimate βx and κt.
Based on {κ̂t, for t ∈ Θtime}, the autoregressive integrated moving average (ARIMA)
model is separately fitted to forecast the future time components κt and thus the
mortality projection for any future year can be obtained.

Considering additional information contained in the exposure at risk (Ex,t),
Brouhns et al. (2002) modified the LC model into the following Poisson framework

Dx,t | µx,t ∼ Poisson(Ex,tµx,t) with log µx,t = αx + βxκt, (2)

where Dx,t is the death toll for the group aged x at time t, and µx,t is the corre-
sponding theoretic mortality rate. Note that µx,t differs from mx,t = Dx,t/Ex,t in
(1), and that the cases with the same observed rate will have different likelihood
values if their Ex,ts’ differ. With the same constraints on βx and κt, Brouhns et al.
(2002) adopted the maximum likelihood estimation for αx, βx and κt in (2), and
similarly, fitted {κ̂t, for t ∈ Θtime} with the ARIMA model afterwards.

It is clear that both the LC and Poisson LC models are two-stage analyses,
where the main model (that is, (1) or (2)) and the ARIMA model are fitted for
estimation and prediction, respectively. Consequently, it may underestimate the
uncertainty of the mortality projection. To properly reflect the uncertainty from the
estimation process in the main model into forecasting, Czado et al. (2005) considered
the Poisson LC model in Bayesian framework, where an MCMC sample is drawn
from the posterior distribution of the joint model and used to construct the posterior
predictive distribution of mortality rates in the future. Another efforts on improving
the Poisson LC model can be found in Wong et al. (2018), where the proposed
method tackles with overdispersion potentially encountered in the Poisson model.
Letting νx,t denote a random effect following N(0, σ2), the normal distribution with
mean 0 and variance σ2, they proposed the Poisson log-normal Lee-Carter (PLNLC)
model as

Dx,t | µx,t ∼ Poisson(Ex,tµx,t) with log µx,t = αx + βxκt + νx,t. (3)

With this additional diffusion νx,t, the PLNLC model relaxes the equality assump-
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tion of mean and variance as follows

E[Dx,t] = E[E(Dx,t|νx,t)] = Ex,t exp(αx + βxκt +
1

2
σ2),

Var[Dx,t] = E[Var(Dx,t|νx,t)] + Var[E(Dx,t|νx,t)]
= E[Dx,t]× {1 + E[Dx,t]× [exp(σ2)− 1]} ≥ E[Dx,t],

and hence, has a wider application in mortality data.
Besides, inspired from Li and Lee (2005) and Renshaw and Haberman (2003),

the works considering two bilinear terms, Antonio et al. (2015) extended (2) to the
following Poisson log-bilinear model for a n-population data set

D
(i)
x,t | µ

(i)
x,t ∼ Poisson(E

(i)
x,tµ

(i)
x,t) with log µ

(i)
x,t = α(i)

x + βxκt + β(i)
x κ

(i)
t , (4)

where the first bilinear term βxκt now denotes the overall effect shared by all popula-
tions aged x at time t, and the superscript (i) marks the ith population-specific term

so that α
(i)
x and β

(i)
x κ

(i)
t , for i = 1, 2, , . . . , n, are a population-specific intercept and

effect, respectively. To identify (4), additional constraints on population-specific age

and time effects are required:
∥∥∥β(i)

x

∥∥∥
2
= 1 and

∑
t∈Θtime

κ
(i)
t = 0, where ∥.∥2 repre-

sents the L2 norm of a vector. Through jointly investigating related populations, (4)
tends to be more efficient than a separate modeling using PLC on each population.

In this paper, we consider pros and cons of the works mentioned above, and
propose the Poisson Log-normal model for mortality projection of multi-population
in the Bayesian framework. This new model not merely combines the PLNLC model
with (4), but can also incorporate spatial information in model selection of time

structures of κ
(i)
t in a one-stage analysis. As a result, it can serve for more varieties

of mortality data. We introduce the formulation of our model in Section 3.

3 THE PROPOSED MODEL

3.1 Bayesian Poisson Log-normal Lee-Carter Model with
Regularized Time Structure for Multi-population

Let ν
(i)
x,t denote the ith population-specific random effect following N(0, σ2

i ) for
i = 1, 2, . . . , n. We propose the Bayesian Poisson log-normal Lee-Carter regularized
model for n-population (BPLNLCrm) as follows

D
(i)
x,t | µ

(i)
x,t ∼ Poisson(E

(i)
x,tµ

(i)
x,t) with log µ

(i)
x,t = α(i)

x + βxκt + β(i)
x κ

(i)
t + ν

(i)
x,t,

κt = φ1 + φ2t+ ρ[κt−1 − φ1 − φ2(t− 1)] + ϵt, (5)

κ
(i)
t = φ

(i)
1 + φ

(i)
2 t+ ρ(i)[κ

(i)
t−1 − φ

(i)
1 − φ

(i)
2 (t− 1)] + ϵ

(i)
t ,

where ϵt
i.i.d.∼ N(0, σ2

κ), ϵ
(i)
t

i.i.d.∼ N(0, σ2
κ(i)), i = 1, 2, . . . , n, x ∈ Θage, and t ∈ Θtime.

A few comments are warranted. First, the first line of (5) can be viewed as a
generalization of (3) to a multi-population problem while the last two equations

describe the dependence structures of κt and κ
(i)
t .
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Let

UN×N =




1 0 · · · · · · 0

−ρ 1
...

0 −ρ
. . .

...
...

. . . . . . . . .

0 · · · −ρ 1



,U

(i)
N×N =




1 0 · · · · · · 0

−ρ(i) 1
...

0 −ρ(i)
. . .

...
...

. . . . . . . . .

0 · · · −ρ(i) 1



,W =



1 t1
...

...
1 tN


 ,

and also define φ = (φ1, φ2)
′, φ(i) = (φ

(i)
1 , φ

(i)
2 )′, Q = U ′U , and Q(i) = U (i)′U (i).

These n+ 1 dependence structures of time effects can also be written as

κ ∼ N(Wφ, σ2
κQ

−1),

and

κ(i) ∼ N(Wφ(i), σ2
κ(i)(Q

(i))−1), (6)

where κ = (κ1, κ2, . . . , κN)
′ and κ(i) = (κ

(i)
1 , κ

(i)
2 , . . . , κ

(i)
N )′. Secondly, when all φ(i)’s

are zeros, the dependence structures reduce back to the AR(1) model used in Antonio
et al. (2015). Although Antonio et al. (2015) justified this special setting in certain
applications, we prefer to consider a more general structure and let data speak
out the truth of each φ

(i)
1 and φ

(i)
2 . With such a motivation and considering the

geographic proximity in adjacent areas, we develop a novel dirac spike function to
each φ

(i)
1 and φ

(i)
2 as follows

φ
(i)
l ∼ w

(i)
l N(0, σ2

κ(i)) + (1− w
(i)
l )δ

(i)
l , (7)

w
(i)
l | p(i)l ∼ Bernoulli(p

(i)
l ≡ P (λ

(i)
l > 0)), (8)

λl | ηl, τl ∼ N(ηl, (In − τlS)
−1), (9)

where w
(i)
l is a binary variable with success probability p

(i)
l that is determined by

the latent variable λ
(i)
l , δ

(i)
l is a point mass at zero, λl = (λ

(1)
l , λ

(2)
l , . . . , λ

(n)
l )′, ηl =

(η
(1)
l , η

(2)
l , . . . , η

(n)
l )′, In is an identity matrix of size n, S is a n×n adjacency matrix

with si,i′ = 1 if the ith and i′th regions are neighboring, si,i′ = 0 otherwise, and
l = 1, 2.

A few comments are warranted. First, via the dirac spike setting in (7), our model
can explore the model space of 22n possible dependence structures of κ(i) in a single
analysis; i.e., simultaneous model selection and parameter estimation and prediction.
When n is big, it can greatly ease computation in model selection compared to
the traditional criteria-based approaches, such as the marginal likelihood criterion
and the Akaike information criterion. Besides, the introduced CAR model in (9)
can incorporate spatial information into the selection procedure so that retain a
more efficient MCMC sample. Also, note that when τl in (9) is set as zero, the

proposed hierarchical model reduces back to the traditional beta prior for p
(i)
l via

the probit link. Therefore, our method can be viewed as a generalization of the
standard dirac spike, and is also suitable for a multi-population problem when extra
spatial information is unavailable. Lastly, unlike the original CAR model, where
the covariance matrix is set as σ2

l (In − τlS)
−1, we specify σ2

l = 1 to avoid the
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identification problem. As a result, the full conditional of λ
(i)
l happens to be the

same data augmentation as in Albert and Chib (1993) and is analytically tractable.
We also want to point out that with the same constraints as used in Antonio

et al. (2015),
∑

x∈Θage

βx = 1,

∑
t∈Θtime

κt = 0,

∥∥β(i)
x

∥∥
2
= 1,∑

t∈Θtime

κ
(i)
t = 0.

The interpretation of each parameter in (5) is similar to the one in Antonio et al.

(2015). However, due to the existence of ν
(i)
x,t, α

(i)
x can only be interpreted as the

approximation of mean of log rates at age x across time in the ith population. See
Antonio et al. (2015) in details for the advantages of such a constraint setting.

3.2 Prior Specifications

3.2.1 Prior Distributions for Age Parameters

To assure the tractable full conditional distribution of α
(i)
x , we conduct the same

variable transformation e
(i)
x = exp(α

(i)
x ) as Czado et al. (2005) and Antonio et al.

(2015) and propose

e(i)x ∼ Gamma(a(i)x , b(i)x ),

with the corresponding density

π(e(i)x ) =
(b

(i)
x )a

(i)
x

Γ(a
(i)
x )

(e(i)x )a
(i)
x −1 exp(−e(i)x b(i)x ),

where a
(i)
x and b

(i)
x are pre-specified constants. As for β = (β1, β2, . . . , βM)′ and

β(i) = (β
(i)
1 , β

(i)
2 , . . . , β

(i)
M )′, we consider the following non-informative priors

β | σ2
β ∼ N

(
1

M
JM , σ2

βIM

)
,

β(i) | σ2
β(i) ∼ N

(
1

M
JM , σ2

β(i)IM

)
,

σ2
β ∼ InvGamma(aβ, bβ),

σ2
β(i) ∼ InvGamma(a

(i)
β , b

(i)
β ),

where JM is a M × 1 vector with all elements equal to 1, and aβ, bβ, a
(i)
β , and

b
(i)
β are pre-specified constants. Note that the proposed priors for β and β(i) are
non-informative in the sense that they are centered at 1/M ; i.e., the constraint (=1)
equally shared byM age groups. Also, note that the density of an InvGamma(aβ, bβ)
random variable σ2

β is given by

π(σ2
β) =

b
aβ
β

Γ(aβ)
(σ2

β)
−aβ−1 exp(−bβ/σ

2
β).
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3.2.2 Prior Distributions for Time Parameters

We consider the following priors for the parameters associated with κ

φ ∼ N2(φ0,Σ0),

ρ ∼ N(0, σ2
ρ)1 {ρ ∈ (−1, 1)} ,

σ2
κ ∼ InvGamma(aκ, bκ),

where φ0, Σ0, σ
2
ρ, aκ, and bκ are pre-specified hyperparameters, and 1 {ρ ∈ (−1, 1)}

is an indicator function equal to 1 when ρ is between -1 and 1.
As for κ(i) in (6), we follow the proposed model in (7)-(9) and have

ηl ∼ N(η0, In),

τl ∼ Unif(τ−1
min, τ

−1
max),

ρ(i) ∼ N(0, σ2
ρ(i))1

{
ρ(i) ∈ (−1, 1)

}
,

σ2
κ(i) ∼ InvGamma(a(i)κ , b(i)κ ),

where τmin and τmax are minimum and maximum eigenvalues of the adjacent matrix
S, respectively, and η0, σ

2
ρ(i)

, a
(i)
κ , and b

(i)
κ are pre-specified hyperparameters.

3.2.3 Prior Distributions for Overdispersion Parameters

Last, following the practical purpose as mentioned in Gelman et al. (2006), we
assign an Inverse Gamma distribution for σ2

i

σ2
i ∼ InvGamma(a(i)µ , b(i)µ ),

where a
(i)
µ and b

(i)
µ are pre-specified.

3.3 Posterior Computation

3.3.1 Posterior Distributions for Age Parameters

Let θ = (e(1), e(2), . . . , e(n),β′, (β(1))′, (β(2))′, . . . , (β(n))′, σ2
β, σ

2
β(1) , σ

2
β(2) , . . . , σ

2
β(n) ,

κ′,
(κ(1))′, (κ(2))′, . . . , (κ(n))′,φ′, (φ(1))′, (φ(2))′, . . . , (φ(n))′, ρ, ρ(1), ρ(2), . . . , ρ(n), σ2

κ, σ
2
κ(1) ,

σ2
κ(2) , . . . , σ

2
κ(n) , w

(1)
1 , w

(2)
1 , . . . , w

(n)
1 , w

(1)
2 , w

(2)
2 , . . . , w

(n)
2 , λ

(1)
1 , λ

(2)
1 , . . . , λ

(n)
1 , λ

(1)
2 , λ

(2)
2 , . . . , λ

(n)
2 ,

η
(1)
1 , η

(2)
1 , . . . , η

(n)
1 , η

(1)
2 , η

(2)
2 , . . . , η

(n)
2 , τ1, τ2, σ

2
1, σ

2
2, . . . , σ

2
n, ν

(1)
x,t , ν

(2)
x,t , . . . , ν

(n)
x,t )

′, and let the
notation “ | .” represent “conditional on all other parameters and the data G”. The

7
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full conditional distributions of age parameters are given by

π(e(i)x | .) ∝ exp(−c(i)x e(i)x )(e(i)x )D
(i)
x,.

∣∣∣∣
d

de
(i)
x

g−1(α(i)
x )

∣∣∣∣ π(e(i)x )

∝ exp
[
−(b(i)x + c(i)x )e(i)x

]
(e(i)x )a

(i)
x +D

(i)
x,.−1, (10)

π(βx | .) ∝
n∏

i=1

∏
t∈Θtime

exp
[
βxκtD

(i)
x,t − E

(i)
x,t exp(α

(i)
x + βxκt + β(i)

x κ
(i)
t + ν

(i)
x,t)

]

× exp

[
−
(βx − 1

M
)2

2σ2
β

]
, (11)

π(β(i)
x | .) ∝

∏
t∈Θtime

exp
[
β(i)
x κ

(i)
t D

(i)
x,t − E

(i)
x,t exp(α

(i)
x + βxκt + β(i)

x κ
(i)
t + ν

(i)
x,t)

]

× exp

[
−
(β

(i)
x − 1

M
)2

2σ2
β(i)

]
, (12)

and

π(σ2
β | .) ∝ (σ2

β)
−ãβ−1 exp(−b̃β/σ

2
β), (13)

π(σ2
β(i) | .) ∝ (σ2

β(i))
−ã

(i)
β −1 exp(−b̃

(i)
β /σ2

β(i)), (14)

where c
(i)
x =

∑
t∈Θtime

E
(i)
x,t exp(βxκt + β

(i)
x κ

(i)
t + ν

(i)
x,t), D

(i)
x,. =

∑
t∈Θtime

D
(i)
x,t − 1, ãβ =

aβ + M
2
, b̃β = bβ + 1

2

(
β − 1

M
JM

)′ (
β − 1

M
JM

)
, ã

(i)
β = a

(i)
β + M

2
, and b̃

(i)
β = b

(i)
β +

1
2

(
β(i) − 1

M
JM

)′ (
β(i) − 1

M
JM

)
. From (10), (13), and (14), we have

e(i)x | . ∼ Gamma(a(i)x +D(i)
x,., b

(i)
x + c(i)x ),

σ2
β | . ∼ InvGamma(ãβ, b̃β),

σ2
β(i) | . ∼ InvGamma(ã

(i)
β , b̃

(i)
β ),

and thus they can be easily sampled in each iteration.
Due to unidentifiable kernels in (11) and (12), the Metropolis-Hastings (MH)

sampling is applied to update βx and β
(i)
x . Specifically, let β

[j]
x denote the jth iteration

of βx, and let A\{} denote all parameters inA except the ones in {}. Assuming that

β
[j−1]
y for y ≥ x and θ[j]\{β[j]

y for y ≥ x} are ready, we consider β∗
x ∼ N(β

[j−1]
x , σ2

x)
as the proposal distribution, where σ2

x is chosen to ensure the acceptance probability
between 20% and 40%. With this symmetric proposal, the acceptance probability

Φ(β[j−1]
x , β∗

x) = min

{
1,

π(β∗
x|{β

[j−1]
y for y > x},θ[j]\{β[j]

y for y ≥ x}, G)

π(β
[j−1]
x |{β[j−1]

y for y > x},θ[j]\{β[j]
y for y ≥ x}, G)

}

is compared with a random value u from the Uniform(0,1) and

β[j]
x =

{
β∗
x if u ≤ Φ(β

[j−1]
x , β∗

x)

β
[j−1]
x o.w.

.

8
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To satisfy the constraint
∑

x∈Θage
βx = 1, we further calculate B̃ =

∑
y≤x β

[j]
y +∑

y>x B
[j−1]
y , and update

(β[j]
x1
, . . . , β[j]

x , β
[j−1]
x+1 , . . . , β[j−1]

xM
) ←

(β
[j]
x1 , . . . , β

[j]
x , β

[j−1]
x+1 , . . . , β

[j−1]
xM )

B̃

and κ[j] ← κ[j]B̃. We repeat all steps above till x = xM to retain the jth iteration of
β. For updating β

(i)
x (and also κ

(i)
t ), the similar steps are implemented except that

B̃ is now calculated as the L2 norm.

3.3.2 Posterior Distributions for Time Parameters

In this section, we separately discuss the sampling algorithms for common and
population-specific time parameters since the dependence structure of the latter
is further regularized by the dirac spike setting and available spatial information.
Let κ−t = κ\{κt}; i.e., (κ1, . . . , κt−1, κt+1, . . . , κtN )

′, and ηt = φ1 + φ2t, the full
conditional distributions of κ,φ, ρ, and σ2

κ are proportional to

π(κt | .) ∝
n∏

i=1

∏
x∈Θage

exp
[
βxκtD

(i)
x,t − E

(i)
x,t exp(α

(i)
x + βxκt + β(i)

x κ
(i)
t + ν

(i)
x,t)

]

× f(κt | κ−t), (15)

π(φ | .) ∝ exp

[
− 1

2σ2
κ

(φ′(Σ∗)−1φ− 2(κ′QW + σ2
κφ

′
0Σ

−1
0 )φ)

]
, (16)

π(ρ | .) ∝ exp

[
− 1

2σ2
κ

(
aρρ

2 +
σ2
κ

σ2
ρ

ρ2 − 2bρρ

)]
1 {ρ ∈ (−1, 1)} , (17)

π(σ2
κ | .) ∝ (σ2

κ)
−(aκ+N/2)−1 exp

[
− 1

σ2
κ

(
bκ +

1

2
(κ−Wφ)′Q(κ−Wφ)

)]
,

(18)

where f(κt | κ−t) are the conditional distribution of κt based on AR(1) with a drift
in (5), Σ∗ = (W ′QW + σ2

κΣ
−1
0 )−1, aρ =

∑tN
t=t2

(κt−1 − ηt−1)
2, and bρ =

∑tN
t=t2

(κt −
ηt)(κt−1 − ηt−1). Note that when t = t1,

f(κt | κ−t) ∝ f(κt)f(κt+1 | κt)

∝ exp

[
− 1

2σ2
κ

[(κt − ηt)
2 + (κt+1 − ηt+1 − ρ(κt − ηt))

2]

]
;

when t1 < t < tN ,

f(κt | κ−t) ∝ f(κt+1 | κt)f(κt | κt−1)

∝ exp

[
− 1

2σ2
κ

[(κt − ηt − ρ(κt−1 − ηt−1))
2 + (κt+1 − ηt+1 − ρ(κt − ηt))

2]

]
;

and when t = tN ,

f(κt | κ−t) ∝ f(κt | κt−1) ∝ exp

[
− 1

2σ2
κ

(κt − ηt − ρ(κt−1 − ηt−1))
2

]
.

9
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From (16), (17), and (18), φ, ρ and σ2
κ are updated by

φ | . ∼ N(Σ∗(W ′Qκ+ σ2
κΣ

−1
0 φ0), σ

2
κΣ

∗),

ρ | . ∼ N


 bρ

aρ +
σ2
κ

σ2
ρ

,
σ2
κ

aρ +
σ2
κ

σ2
ρ


1 {ρ ∈ (−1, 1)} ,

σ2
κ | . ∼ InvGamma


aκ +

N

2
, bκ +

1

2
(κ−Wφ)′Q(κ−Wφ)


.

To update κt in (15), we let κ
[j]
t denote the jth iteration of κt and assume that κ

[j−1]
z

for z ≥ t and θ[j]\{κ[j]
z for z ≥ t} are available. Considering κ∗

t ∼ N(κ
[j−1]
t , σ2

t ) as
the proposal for the MH sampling (similarly, σ2

t is selected to have the acceptance
probability around 20% ∼ 40%), we then have

κ
[j]
t =


κ∗
t if u ≤ Φ(κ

[j−1]
t , κ∗

t )

κ
[j−1]
t o.w.

,

where

Φ(κ
[j−1]
t , κ∗

t ) = min


1,

π(κ∗
t |{κ

[j−1]
z for z > t},θ[j]\{κ[j]

z for z ≥ t}, G)

π(κ
[j−1]
t |{κ[j−1]

z for z > t},θ[j]\{κ[j]
z for z ≥ t}, G)



and u ∼ Uniform(0, 1). With the constraint


t∈Θtime
κt = 0, we next have

(κ
[j]
t1 , . . . , κ

[j]
t , κ

[j−1]
t+1 , . . . , κ

[j−1]
tN

) ← (κ
[j]
t1 , . . . , κ

[j]
t , κ

[j−1]
t+1 , . . . , κ

[j−1]
tN

)− K̃

and (α
(i)
x )[j] ← (α

(i)
x )[j] + β

[j]
x K̃, where K̃ = (


z≤t κ

[j]
z +


z>t κ

[j−1]
z )/N . Repeat all

procedures till t = tN to complete the updates of κ[j].
To update the parameters associated with population-specific time effect profiles,

we first follow the Brook’s lemma: λ
(i)
l | λ(−i)

l , η
(i)
l , τl ∼ N(µ∗

i , 1) to obtain

π(λ
(i)
l | .) ∝ exp


−1

2
(λ

(i)
l − µ∗

i )
2


1{w(i)

l = 1}1{λ(i)
l > 0}+ 1{w(i)

l = 0}1{λ(i)
l ≤ 0}


,

π(w
(i)
l = 1 | λl, η

(i)
l , τl) = p(λ

(i)
l > 0 | λ(−i)

l , η
(i)
l , τl) = Φ(µ∗

i ),

where λ
(−i)
l = λl\λ(i)

l , and µ∗
i = η

(i)
l + τl


j ̸=i wi,j(λ

(j)
l − η

(j)
l ). Accordingly, we have

λ
(i)
l | . ∼


N(µ∗

i , 1)1{λ
(i)
l > 0} if w

(i)
l = 1,

N(µ∗
i , 1)1{λ

(i)
l ≤ 0} if w

(i)
l = 0,

and the status of w
(i)
l is determined via

w
(i)
l | . ∼ Bernoulli


p̃
(i)
l =

m(w
(i)
l = 1)Φ(µ∗

i )

m(w
(i)
l = 1)Φ(µ∗

i ) +m(w
(i)
l = 0)[1− Φ(µ∗

i )]


,

wherem(·) = exp

−(κ(i) −Wφ)TQ(i)(κ(i) −Wφ)/(2σ2

κ(i))

is the conditional marginal

likelihood measuring the overall model fitting to the data when specifying the value

10
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of w
(i)
l . Secondly, with the identifiable full conditional distributions, ηl, φ

(i), ρ(i),
and σ2

κ(i) are updated by

ηl | . ∼ N
�
(Vl + In)

−1(η0 + Vlλl), (Vl + In)
−1

,

φ(i) | . ∼ N(a∗,A∗σ2
κ(i)) if w

(i)
1 = w

(i)
2 = 1,

ρ(i) | . ∼ N




b
(i)
ρ

a
(i)
ρ +

σ2
κ(i)

σ2
ρ(i)

,
σ2
κ(i)

a
(i)
ρ +

σ2
κ(i)

σ2
ρ(i)


1


ρ(i) ∈ (−1, 1)


,

σ2
κ(i) | . ∼ InvGamma


a
(i)
k +

N

2
, b(i)κ +

1

2
(κ(i) −Wφ(i))′Q(i)(κ(i) −Wφ(i))


,

where Vl = In−τlS, a
∗ = A∗W ′Q(i)κ(i), A∗ = (W ′Q(i)W+I2)

−1, η
(i)
t = φ

(i)
1 +φ

(i)
2 t,

a
(i)
ρ =

tN
t=t2

(κ
(i)
t−1 − η

(i)
t−1)

2, b
(i)
ρ =

tN
t=t2

(κ
(i)
t − η

(i)
t )(κ

(i)
t−1 − η

(i)
t−1). Note that when

w
(i)
1 = w

(i)
2 = 0, φ(i) is simply updated as (0, 0)′, and that when w

(i)
−l = 0, w

(i)
l = 1,

φ
(i)
−l is 0 while φ

(i)
l is updated from the marginal normal distribution with mean and

variance equal to the lth and (l, l) elements in a∗ and A∗σ2
κ(i) , respectively. Next,

due to a complex structure

π(τl | .) ∝ |Vl|
1
2 exp


−1

2
(λl − ηl)

′Vl(λl − ηl)


1{τ−1

min, τ
−1
max},

we conduct the MH sampling and consider τ ∗l ∼ N(τ
[j−1]
l , σ2

l )1{τ−1
min, τ

−1
max} as the

proposed density for τl. Finally, due to the same structure of π(κ
(i)
t | .) as π(κt | .)

and the same constraint of κ
(i)
t as κt, the procedure for κ

(i)
t is similar to the one for

κt.

3.3.3 Posterior Distributions for Overdispersion Parameters

Since the full conditional distributions of σ2
i and ν

(i)
x,t are proportional to

π(σ2
i | .) ∝(σ2

i )
−(a

(i)
µ +MN/2)−1 exp


− 1

σ2
i


b(i)µ +

1

2


x∈Θage


t∈Θtime

(ν
(i)
x,t)

2




 ,

π(ν
(i)
x,t | .) ∝ exp


−E

(i)
x,t exp(α

(i)
x + βxκt + β(i)

x κ
(i)
t + ν

(i)
x,t) + ν

(i)
x,tD

(i)
x,t −

(ν
(i)
x,t)

2

2σ2
i


,

we have

σ2
i | . ∼ InvGamma


a(i)µ +

MN

2
, b(i)µ +

1

2


x∈Θage


t∈Θtime

(ν
(i)
x,t)

2


 ,

and update ν
(i)
x,t via the MH sampling. Specifically, we propose (ν

(i)
x,t)

∗ ∼ N((ν
(i)
x,t)

[j−1], σ2
q )

with σ2
q chosen to have the acceptance probability around 20%∼40%.

11
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4 NUMERICAL ANALYSIS

4.1 Data Description

Two Japanese mortality data sets from the Japanese Mortality Database are used
to illustrate our proposed method. In the first application, we apply to the national
gender-specific deaths and exposures from 1951 to 2000 to retain the mortality
projections from 2001 to 2016. In this two-population problem; i.e., each gender
is considered as a single population, we pre-specify τ1 = τ2 = 0 and evaluate the
performance of BPLNLCrm under a situation lacking spatial information. Then,
our focus switches to the regional mortality rates, where the death tolls from 1975
to 2016 of six Northeast regions (Akita, Aomori, Fukushima, Iwate, Miyagi, and
Yamagata) along with two Kanto regions (Tokyo and Kanagawa) are collectively
investigated in the second analysis. By utilizing the well-defined adjacency matrix
seized in our hierarchical structure, we empirically demonstrate the advantages of
BPLNLCrm in both model selection procedure and prediction. Both analyses were
run in R-4.2.1 using the Palmetto Cluster, which is Clemson University’s primary
high-performance computing resource.

4.2 Initial Settings of Prior Distributions

Following the prior specifications in Sections 3.2.1-3.2.3, we consider a
(i)
x = b

(i)
x =

1, aβ = bβ = 0.01, and a
(i)
β = b

(i)
β = 0.001 as age-related hyperparameters, and set

a
(i)
µ = b

(i)
µ = 2.5 for overdispersion parameters. For those hyperparameters related

to the time factors, they are set as a = b = 1, aκ = bκ = 0.001, a
(i)
κ = b

(i)
κ = 0.001,

σ2
ρ = 1, σ2

ρ(i)
= 0.1, φ0 = (0, 0)

′
, Σ0 = diag(10, 10), and η0 = (0.1, 0.1, . . . , 0.1)′,

respectively. It has to be mentioned that the pre-specified values here are similar
to the ones in Czado et al. (2005) and Antonio et al. (2015), and non-informative
relative to the size of our analyzing data sets.

4.3 National Gender-specific Data

To evaluate the performance of BPLNLCrm, an MCMC sample of 20,000 it-
erations is generated with the first 10,000 as burn-ins. We then select the most
dominant combination of (w

(F )
1 , w2,

(F ) , w
(M)
1 , w

(M)
2 ) in the dirac spike setting. Table

1 lists out the top four dependence structures of gender-specific time effect profiles
in the MCMC chain. Accordingly, our final chosen models for κ(F ) and κ(M) are
given by

κ
(F )
t = φ

(F )
1 + φ

(F )
2 t+ ρ(F )

(
κ
(F )
t−1 − φ

(F )
1 − φ

(F )
2 (t− 1)

)
+ ϵ

(F )
t ,

and

κ
(M)
t = φ

(M)
1 + φ

(M)
2 t+ ρ(M)

(
κ
(M)
t−1 − φ

(M)
1 − φ

(M)
2 (t− 1)

)
+ ϵ

(M)
t ,

respectively. Based on this 47% of MCMC sample, we further present the pos-
terior medians of α(i), β, β(i), κ and κ(i) along with the 95% highest posterior
density (HPD) intervals in Figures 1-3. Last, we assess the overall model fitting and
prediction by comparing with the method by Antonio et al. (2015). For MCMC

12
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convergence diagnostics, trace plots of selected parameters are also provided in the
supplementary materials.

Table 1: Top four dependence structures of κ(F ) and κ(M).

Dependence Structure Proportion

w
(F )
1 = 1, w

(M)
1 = 1, w

(F )
2 = 1, w

(M)
2 = 1 0.47

w
(F )
1 = 1, w

(M)
1 = 1, w

(F )
2 = 1, w

(M)
2 = 0 0.08

w
(F )
1 = 1, w

(M)
1 = 1, w

(F )
2 = 0, w

(M)
2 = 1 0.06

w
(F )
1 = 1, w

(M)
1 = 0, w

(F )
2 = 0, w

(M)
2 = 0 0.05

Figures 1(a) and 1(b) present the results of α
(F )
x and α

(M)
x under the BPLNLCrm

model, where the 95% HPD intervals are obtained by the method suggested in Hoff
(2009). From Figure 1, we notice that the posterior distributions of α

(F )
x and α

(M)
x

have small variances, and it is worth pointing out some features in the estimated
curves: First, male tends to have a higher mortality rate than woman. This justifies
our multi-population modeling in this case. Secondly, the decline from the infant
stage to teenager is likely related to the immune system strengthened with growing
age. Then, when ages are around 16-21, the health condition may not be the only
decisive factor for the hump. It might be blamed on unnatural deaths caused by
immature behaviors in this rebellious stage such as alcohol and drug uses, crimes,
and careless drivings etc. For the adult-and-elder stage, the curves consistently go
up since deaths happening in this stage are more relevant to natural causes.

13
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(a)

(b)

Figure 1: Plots of the posterior medians of α
(F )
x and α

(M)
x with their 95% HDP

intervals.

Similarly, Figure 2(a) shows the posterior median and 95% HPD interval of com-
mon factor βx while Figures 2(b) and 2(c) are for the population-specific parameters

β
(F )
x and β

(M)
x , respectively. It can be seen that the corresponding posterior distribu-

tions are concentrated, indicating that the effect sizes of βx and β
(i)
x are not sensitive

to all time change at any ages.

14
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(a)

(b)

(c)

Figure 2: Plots of the posterior medians of βx, β
(F )
x and β

(M)
x with their 95% HDP

intervals.
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In Figures 3(a)-3(c), we present the posterior medians and 95% HPD intervals of

κt, κ
(F )
t , and κ

(M)
t , respectively. In addition to the years 1951-2000, the follow-up 20-

year ahead projections of time effects are also provided via the posterior predictive
distributions. To obtain a sample from the posterior predictive distribution of κt,
we exploit the second equation in (5) iteratively. Specifically, we have

κ
[j]
N+t′ ∼ N

(
φ
[j]
1 + φ

[j]
2 (N + t′) + ρ[j][κ

[j]
N+t′−1 − φ

[j]
1 − φ

[j]
2 (N + t′ − 1)], (σ2

κ)
[j]
)

for t′ = 1, 2, . . . , 20. A similar procedure on the third equation in (5) is implemented

for κ
(i)
t . From Figure 3, we observe decreasing trends in most of time windows,

which might be attributed to the advances in medical technology and social welfare.
We also observe that κ

(F )
t and κ

(M)
t have similar estimated curves and converge to

the same size when time passes, meaning that the gender-specific time effects will
reach a stable status in the long run as mentioned in Li and Lee (2005).

16
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(a)

(b)

(c)

Figure 3: Plots of the posterior medians of κt, κ
(F )
t and κ

(M)
t with their 95% HDP

intervals and the corresponding 20-years ahead projections.
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The way to empirically peek the posterior distributions of future time effects
(that is, κ2001, κ2002, . . . , κ2020) above can also be used to assess the overall model

fitting and its prediction ability. In particular, we compare mortality rates µ
(i)
x,t with

the ones simulated from the fitted model, where (µ
(i)
x,t)

[j] = exp
[
(α

(i)
x )[j] + β

[j]
x κ

[j]
t +

(β
(i)
x )[j](κ

(i)
t )[j] + (ν

(i)
x,t)

[j]
]
.

Figures 4-6 present the medians and 95% HPD intervals of simulated log mor-
tality rates at three selected ages 15, 55, and 70, respectively. In addition to the
training time window (years 1950-2000), 20-years ahead projections are provided to
assess the prediction ability of BPLNLCrm (marked as “model 1”). We also include
the simulated results of the method by Antonio et al. (2015) (marked as “Antonio”)
as a comparison.

From Figures 4-6, we observe that the estimated curves (black and green) are
close to each other within the training time window, but become bifurcating in the
validation. Overall, the BPLNLCrm model provides better 20-years ahead projec-
tions because the true log rates are closer to the black predicted curves. We also
notice that although the model by Antonio et al. (2015) tends to produce shorter
credible intervals (blue dashed curves), those intervals fail to contain many of ob-
served and validated log rates, implying the potential underestimation of variability
inherited in model 2. In contrast, the wider credible intervals based on BPLNLCrm,
which contain reasonable number of points, may properly present the variability of
data by introducing additional overdispersion term, and are preferred.
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(a)

(b)

Figure 4: Plots of the observed and simulated log death rates at age 15 along with
20-years ahead projections and 95% HDP intervals for (a) female and (b) male.
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(a)

(b)

Figure 5: Plots of the observed and simulated log death rates at age 55 along with
20-years ahead projections and 95% HDP intervals for (a) female and (b) male.
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(a)

(b)

Figure 6: Plots of the observed and simulated log death rates at age 70 along with
20-years ahead projections and 95% HDP intervals for (a) female and (b) male.
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4.4 Northeast Region-specific Data

In this section, we apply BPLNLCrm to the mortality data with spatial infor-
mation. Specifically, we consider six Northeast regions (Akita, Aomori, Fukushima,
Iwate, Miyagi, and Yamagata) and two Kanto regions (Tokyo and Kanagawa) in
the analysis. This choice reflects two different lifestyles and disconnected geospatial
topologies, which may have an impact on the mortality. To evaluate the performance
of our proposed model, which can leverage spatial information into the model se-
lection and fitting, we compare with the results by BPLNLCrm with pre-specified
τ1 = τ2 = 0. For convenience, we follow Section 4.3, and let “model 1” and “model
2” stand for BPLNLCrm with or without pre-specified τls’, respectively.

One challenge of the dirac spike setting in prediction-oriented models is that
it usually requires a separate MCMC sample from the final chosen model to make
predictions. This is because only a small portion of the original MCMC sample
corresponds to the final choice and could be used to construct the posterior predictive
distributions of future mortality rates. For example, as shown in Table 1, only
47% of MCMC sample is from the dominant dependence structure. This situation
could become deteriorated when more populations are involved in the study. To
improve the selection procedure and achieve a true one step analysis for both model
selection and prediction, we use the hierarchical spatial model in (9) and facilitate
the MCMC visits to the best model. Similar to Table 1, Tables 2 and 3 summarize
the top four models and their relative frequencies of visits by an MCMC sample
(10,000 iterations after 10,000 as burn-ins). As expected, the spatial information
that contains geographic similarities and dissimilarities can inform the selection
procedure and yield around 50% (≈ (0.38 − 0.25)/0.25) more visits to the best
model. It is also worth mentioning that the final model indeed presents different
dependence structures of time effects between Northeast and Kanto regions (only

w
(7)
2 = w

(8)
2 = 0).

Table 2: Top four dependence structures of κ(i) when τ1 and τ2 are set as 0.

Variables Proportion

w1;w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(4)
2 , w

(5)
2 , w

(6)
2 0.25

w1;w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(4)
2 , w

(5)
2 , w

(6)
2 , w

(7)
2 0.12

w1;w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(4)
2 , w

(5)
2 , w

(6)
2 , w

(8)
2 0.10

w1;w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(4)
2 , w

(5)
2 , w

(6)
2 , w

(7)
2 , w

(8)
2 0.05
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Table 3: Top four dependence structures of κ(i).

Variables Proportion

w1;w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(4)
2 , w

(5)
2 , w

(6)
2 0.38

w1;w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(4)
2 , w

(5)
2 , w

(6)
2 , w

(7)
2 0.07

w1;w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(4)
2 , w

(5)
2 , w

(6)
2 , w

(8)
2 0.05

w1;w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(4)
2 , w

(5)
2 , w

(6)
2 , w

(7)
2 , w

(8)
2 0.02

Following the chosen model and 38% of an MCMC sample (25% for “model
1”), we further evaluate the model fitting and prediction ability of BPLNLCrm by
comparing its mortality projections with the observed and validated rates (training
data set: 1975 ∼ 2004 & validation data set: 2005 ∼ 2016). Figures 7-9 present the
simulated log mortality rates along with 95% HPD intervals for the regions Akita
and Aomori at the three selected ages 35, 55, and 75, respectively. For other six
regions (Fukushima, Iwate, Miyagi, Yamagata, Tokyo and Kanagawa), the reader
may refer to Figures 10-18 in the Appendix. It is clear that two models produce
quite different mortality projections (black and green curves) because the observed
differences are in log scale. Besides, we observe that 95% HPD intervals (blue dot
curves) by “model 2” have overall better coverage of true mortality rates than the
red dot ones by “model 1”, suggesting that the additional hierarchical structure may
yield better projections.
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(a) Akita

(b) Aomori

Figure 7: Plots of the observed and simulated log death rates at age 35 along with
12-year ahead projections and 95% HDP intervals for (a) Akita and (b) Aomori.
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(a) Akita

(b) Aomori

Figure 8: Plots of the observed and simulated log death rates at age 55 along with
12-year ahead projections and 95% HDP intervals for (a) Akita and (b) Aomori.

25



174 Journal of Econometrics and Statistics

(a) Akita

(b) Aomori

Figure 9: Plots of the observed and simulated log death rates at age 75 along with
12-year ahead projections and 95% HDP intervals for (a) Akita and (b) Aomori.
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5 DISCUSSION

This paper presents a Bayesian approach to estimate and predict mortality for
multiple populations under Poisson log-normal assumption. It combines the model
by Antonio et al. (2015) with PLNLC, granting the new model to properly reflect the
variations of mortality in a multi-population problem. Additionally, by introducing a
novel dirac spike function, the new model can leverage additional spatial information
to improve one step analysis; i.e., simultaneously model selection and estimation of
population-specific time effects. As a result, with this affordable computation even
when n is big, it can avoid unnecessary assumptions on dependence structures of
κ
(i)
t . We note that the current model considers the adjacency matrix as the only

resource of spatial information. When more region-specific factors such as cultures,
dietary habits, levels of economic development, and regional climate changes are
available, BPLNLCrm could include them as covariates in the mean function of
λl. We also note that the similar modeling strategies could be applied to a negative
binomial setting, which is a different over-dispersed extension of the Poisson and can
incorporate a random effect into the model. The comparisons and generalizations
of these two versions of LC model require further investigations.
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(a) Fukushima

(b) Iwate

Figure 10: Plots of the observed and simulated log death rates at age 35 along with
12-year ahead projections and 95% HDP intervals for (a) Fukushima and (b) Iwate.
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(a) Miyagi

(b) Yamagata

Figure 11: Plots of the observed and simulated log death rates at age 35 along
with 12-year ahead projections and 95% HDP intervals for (a) Miyagi and (b)

Yamagata.
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(a) Tokyo

(b) Kanagawa

Figure 12: Plots of the observed and simulated log death rates at age 35 along with
12-year ahead projections and 95% HDP intervals for (a) Tokyo and (b) Kanagawa.
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(a) Fukushima

(b) Iwate

Figure 13: Plots of the observed and simulated log death rates at age 55 along with
12-year ahead projections and 95% HDP intervals for (a) Fukushima and (b) Iwate.
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(a) Miyagi

(b) Yamagata

Figure 14: Plots of the observed and simulated log death rates at age 55 along
with 12-year ahead projections and 95% HDP intervals for (a) Miyagi and (b)

Yamagata.
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(a) Tokyo

(b) Kanagawa

Figure 15: Plots of the observed and simulated log death rates at age 55 along with
12-year ahead projections and 95% HDP intervals for (a) Tokyo and (b) Kanagawa.
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(a) Fukushima

(b) Iwate

Figure 16: Plots of the observed and simulated log death rates at age 75 along with
12-year ahead projections and 95% HDP intervals for (a) Fukushima and (b) Iwate.
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(a) Miyagi

(b) Yamagata

Figure 17: Plots of the observed and simulated log death rates at age 75 along
with 12-year ahead projections and 95% HDP intervals for (a) Miyagi and (b)

Yamagata.
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(a) Tokyo

(b) Kanagawa

Figure 18: Plots of the observed and simulated log death rates at age 75 along with
12-year ahead projections and 95% HDP intervals for (a) Tokyo and (b) Kanagawa.
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